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Abstract

A theoretical analysis of microstrip transmission lines is presented which is
based on a derivation of a set of coupled integral equations in terms of a free-
space Green's function in the related inhomogeneous region.

Introduction

During the last decade, several numerical
solutions for microstrip transmission lines
have been developed in terms of a two-
dimensional quasi-static model. These so-
lutions of the static model were formulated
in terms of (1) conformal mapping approaches
[1], (2) variational procedures [2], and (3)
integral equation formulations using a
"dielectric" Green's function or an "image"
Green's function [3-6].

Bryant and Weiss [3] developed an exact
or "dielectric'" Green's function for the in-
homogeneous medium of the transmission line
of Figure 1, which consists of a dielectric
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FIG. 1. Microstrip transmission line

substrate and a vacuum above. Their solution
is based on the linear superposition of
unique solutions of appropriate related prob-
lems to determine the desired solution. How-
ever, to obtain their '"dielectric'" Green's
function, an inhomogeneous Fredholm integral
equation of the second kind must be solved to
determine an unknown charge distribution on
the dielectric interface resulting from a
unit strip source. The potential due to a
unit source on the interface, i.e., the
"dielectric" Green's function, is then com-
puted from a derived integral relationship in
terms of this charge distribution. An
ordinary integral formulation of the compo-
site problem is then solved using appro-
priate numerical procedures and the computed
Green's function. The additional computa-
tions required to compute the Green's func-
tion results in a rather long computation
time for this solution technique. Another
approach to this problem used by Farrar and
Adams [5], as well as others, which has a
shorter computation time employs a technique
whereby the Green's function is derived

from the multiple images of a unit line
source that satisfy the boundary conditions
on the ground plane and at the dielectric
interface. However, this '"image' Green's
function is limited to problems having simple
geometries for which an image can be defined.
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The purpose of this paper is to present
a coupled integral equation formulation of
the static microstrip transmission line in
terms of a free-space Green's function which
leads to a straight forward numerical solu-
tion by the method of momemts [7]. The ap-
proach is not limited to specific geometries,
and arbitrary shaped, inhomogeneous TEM
transmission lines can be analyzed with this
boundary-value problem approach.

Integral Equation Formulation

A two-dimensional boundary-value prob-
lem is considered in this analysis which
consists of two regions as shown in Figure 2.

FIG. 2. Generalized static problem

Region RI consists of a region of homogeneous,
isotropic dielectric material of permittivity,
€1, bounded by the contour c where c=c'+c".
Region RII consists of a homogeneous, iso-
tropic region of permittivity, €5, bounded

by the contours c¢ and cj including a surface
charge source pg on contour cj. In this
case, the potential everywhere on cpy and ¢
are assumed to be known and constant, i.e.

¢g and ¢.7, respectively; however, neither ¢
nor 3¢/9n are known on c.

If a general homogeneous region is con-
sidered, Laplace's equation,

vZo(x,y) = 0 (1)

holds since the region is assumed to be
source free, i.e. a boundary-value problem,
and the free-space Green's function relation,

2
VG, (x,ylxt,yt) = -8 (x'-x,y'-y), (2)

can be considered for each region where

Gole,ylx',y") = - 7= 2/ (x-x)? + (y-y)Z. -



It is well known that an integral equation
for ¢(x,y) can be derived by multiplying (1)
by Gy and (2) by ¢, and then these relations
are summed and Green's theorem is applied to
obtain the relation

9G
= 99 _ 0
¢(x,y) = [ (GO 55~ %35 Jds (4)
°r
where cp is the total contour bounding the
region.  This result is an integral equa-

tion for the solution of Laplace's equation
in terms of the potential and its normal
derivative only on the bounding contours [8].

Thus, in the region RI, an integral equa-
tion of the form of (4) can be formulated
using a free-space Green's function which is
a function of the potential and the normal
derivative of the potential. Note that the
specification of both ¢ and 3¢/3n (Cauchy
boundary conditions) is an over specification
of the problem.

A related equation for region RII can
also be derived that is identical to (4)
except the source pg is included which is
simply an integral equation for Poisson's
equation [8].

In the class of problems solved here, it
is assumed that the potential is known on
all contours except on c¢ and that the normal
component of displacement must be continuous
on c. If these boundary conditions are en-
forced between these two formulations on the
appropriate contours c' and c¢", then the
problem can be readily solved from the limit-
ing case of these integrals through the use
of potential theory. In effect, the two
formulations are employed in a manner such
that the potential on the contour c is
eliminated from the integral equation formu-
lations, and the normal derivative of the
potential is expressed in terms of equivalent
surface charge density on the contour c.

From (4), the potential equation for
region RI results in two expressions as

( 3¢, 3G,
¢1(X,Y) = (GO I ¢1 ﬁ—-)ds,(x,y)eRI (5
c
( 3¢, 36,
0 = (GO . ¢1 gﬁ_)ds’(x’}')ERIlsc6)
c
and from an integral equation solution of
Poisson's equation [8] for Region RII
1 3¢, 86y
¢2(X;Y) = g DSGOds - (Go‘an— - ¢2‘;§‘n"‘)ds;
cq ctey
(x,y)eRII, (7)
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1 q 3¢2 BGO
075 | PsBods = | Bogm - ¢o5)dss
C c+C
0 1 (x,y)eRI (8)

where if (x,y) does not belong to the appro-
priate region, then the potential vanishes
because the region of integration does not
contain the delta function of (2). For the
class of problems considered here, the con-
tour c; is assumed to approach infinity, and,
therefore, the integral on ¢y does not con-
tribute to the solution.

The potentials ¢; and ¢, can be elim-
inated from the integrands of the potential
integral equations (5-8) by using the bound-
ary condition, ¢1 = ¢, on c in (6) and (8).
If these four equations are combined, an
equation for the potential in each of the two
regions are obtained as follows:

1 AL
¢l(x’Y) = e pSGOdS + GO[W - T ]dS,
<y c
(x,y)eRI  (9)
and
3¢ 3¢
1 1 %
¢2(X,Y) = g; [ DSGOdS + I Go[gﬁ“ gﬁ—]dS;
) c
(x,y)eRII, (10)
or ¢; = ¢, = ¢ everywhere in RI and RII.

Since thezintegrand of the contour integral
is discontinuous for (x,y) on ¢, these po-
tential functions can be represented in terms
of an equivalent surface charge density, o.
Thus, the two dielectric problems can be
represented in terms of a source, P, and a
surface charge density residing on the inter-
face in a homogeneous medium €, such that the
potential everywhere is

1 .
— p G.ds ¥ — oG,.ds
€5 [ s 0 0 I 0

CO Cc

[y

o (x,y) (11)

o

where €3 = g4.

If the assumed mathematical model con-
sisting of the homogeneous region with
sources pg and o is to completely represent
the two dielectric problems, the normal com-
ponent of displacement, D, must be continuous
on ¢, Hence, another integral equation in
terms of the equivalent surface charge den-
sity can be obtained from this continuity
requirement from the derivatives of (11) in
the appropriate region as



0 =

BGO o
(ke-1) fg §H—ds + (ke+l) =

o

3G
+ (ke-1) -P o ﬁﬂ ds, (x,y)ec (12)

C

where the limiting case,
[9] and ke=al/eo.

To solve the microstrip problem, the
contour cg is moved to the surface c and made
to correspond to c', for example; then the
entire boundary c is distorted to have the
shape of the microstrip and its image as
shown in Figure 3. Equations (11) and (12)
form a coupled set of integral equations

(x,y)ec, is assumed
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3.Equivalent Microstrip Problem

which can be used to solve for the unknown
charge density as cg approaches c'. In the
limit as the source p. is placed on the
interface, the requirement that the normal
component of displacement be discontinuous
on the strip yields

p
0 = (ke-1) 5> + (ke+l) 92-
BG 8G0
+ (ke-1) sgﬁ_ds + Ugﬁ'ds » (x,y)ec' (13)

c! c
where the limit as cg>c' is applled in the
computation of D in each region. Thus, (11)
and (13) are valid on the strip region c¢' and
(12) holds for continuity of displacement on
c'.
Results

The set of coupled integral equations of
(11), (12), and (13) can be solved for the
unknown free charge on the strip and for the
equivalent bound charge on the dielectric
interface using a method of moments approach
[7]. Numerical results of a parameter study
for this formulation obtained for a pulse
function expansion of the unknown charge
densitics with point matching is presented in
Table I for ke=16. The charge density dis-
tribution on the strip and the "bound" charge
den51ty distribution on the interface are
shown in Figure 4 for W/H=1.0 with ke=4.0.

The data from Table I show that this free-
space Green's function solution is in

close agreement with the results of other
techniques which supports the validity of this
integral equation formulation.

In conclusion, it is well to note that
this type solution is extremely useful for the
analysis of general inhomogeneous transmis-
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sion lines of arbitrary cross section.

TABLE 1

Characteristic Impedance of Microstrip

Transmission Lines (ke=16)

W/H Z, Z,13] Zol5]
0.1 87.3058 Q 87.680 Q 86.9659 Q
0.4 57.9962 57.841 57.4999
1.0 39.6272 39.272 39.2512
2.0 26.8795 26.644 26.7555
4.0 16.7348 - 16.7210
10.0 7.9992 - 8.0385
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distribution; W/H=1.0 and ke=4.0.
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